function

```
[x, phase] = GAT\_1st\_generation (fs, speed, load, speed\_load\_plane, speed\_axis, load\_axis, ratio, lo
 fi zero)
 % OUTPUT:
 % x - generated signal
% phase - angular increments in which signal is observed
% INPUT:
% fs - sampling frequency [hz]
% speed - rotational speed profile [hz] - length = length(x)
% \ load - load \ profile [any units] - length = length(x)
% speed_load_plane - values of the amplitude as a function of speed and load
% speed_axis - speed axis for speed_load_plane [hz]
% load_axis - load axis for speed_load_plane [same units as 'load']
 % ratio - angular frequency of signal to be generated [1/rotation]
 % fi zero - initial phase form 0 - 1, [\pi]
N=length(speed);
dt=1/fs;
t = (1:N) * dt;
 speed=speed*ratio;
phase=cumsum(speed)*dt+fi_zero;
 xn=real(exp(-1i*(2*pi*phase)));
 amplitude=interp2(load axis, speed axis, speed load plane, load, speed, 'spline');
x=xn.*amplitude;
```